Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee
Picture
join us online

Wendy Ku

Computer Vision Tech Lead, Senior Data Scientist, Getty Images
​
​Biography:
Wendy is a Senior Data Scientist at Getty Images, where she develops multilingual and visual-language representation models to improve users’ search experience. She leads Getty Images’ efforts on diagnosing bias and improving fairness in machine learning systems. Prior to joining Getty Images, Wendy was involved in product and operations optimization projects in cybersecurity, consumer finance and restaurant companies. When she’s not working, Wendy enjoys working on her art and running.
ML through a wide-angle lens: Real World Successes and Lessons Learned in Deploying ML Models 
Image search has been a well-established problem area across industries, with a wide range of applications including e-commerce, social media and search engines. As we collectively create and consume more visual content, image search capabilities are becoming increasingly more important. In recent years, multiple large-scale image-text models have been released, reinventing the performance of image-text understanding tasks. However, applying these generalized models out-of-the-box often results in less than desired performance. In practice, deploying and maintaining an image search system presents a different set of challenges.
​
Wondering what else is involved in a machine learning solution besides training and deployment? Or how real world model evaluations differ from Kaggle scoreboards? This talk will cover the less discussed journey of bringing language and image-text models to production.

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2023 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee