Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Nandi Leslie

Engineering Fellow
Raytheon Technologies
Picture
Tech Vision Talk: Unsupervised Learning for Network Intrusion Detection 
Abstract For nearly 40 years, computer scientists and engineers have been concerned with the problem of monitoring networks for unauthorized activities. More recently, anomaly-based intrusion detection systems have been developed to protect enterprise and mobile networks from such attacks. Nonetheless, in-vehicle networks remain vulnerable to a variety of remote attacks that erode information confidentiality, availability, and integrity. Specifically, cyberattacks on the SAE J1939 protocol based on controller access network (CAN) bus for heavy-duty ground vehicles can lead to detectable changes in the physical characteristics of the vehicle. In this talk, I develop an ensemble hierarchical agglomerative clustering (E-HAC) algorithm for detecting remote attacks on the CAN bus. E-HAC is an ensemble learning approach over multiple clustering algorithms with different linkages and pairwise distances between observations. In addition, I present prediction performance results for a dataset consisting of CAN bus and remote attack network traffic to demonstrate the effectiveness of this E-HAC algorithm.
Biography
Nandi is an Engineering Fellow at Raytheon Technologies with over twenty-two years of experience as an applied mathematician. Since 2015, she has also served as a Principal Investigator at the U.S. Army Research Laboratory (ARL). Her interests are focused on machine learning, computational modeling, cybersecurity, and network resilience. She has written over 55 publications in peer-reviewed journals, conference proceedings, and book chapters. From 2007 to 2015, she led and contributed to multi-target tracking projects for the U.S. Navy Submarine Security Technology Program Office as a Program Manager and Senior Operations Research Analyst at Systems Planning and Analysis, Inc. She was a Postdoctoral Researcher and Instructor in the Department of Mathematics at University of Maryland, College Park from 2005 to 2007. She received her B.S. in Mathematics from Howard University and her M.A. and Ph.D. in Applied and Computational Mathematics from Princeton University.

Join us at WiDS Worldwide! 
​
Speakers 

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2023 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee