Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Eileen Martin & Nilah Monnier
Virginia Tech & Stanford University

EPISODE SUMMARY
Finding new ways to collect data – and a willingness to share it – are the hallmarks of a career in academia, according to Eileen Martin and Nila Monnier Ioannidis, when they were at Stanford, as a PhD student and postdoc, respectively. Now, Eileen is an Assistant Professor at Virginia Tech, moving to become an Assistant Professor at Colorado School of Mines in January 2022. Nila is an Assistant Professor at UC Berkeley.

EPISODE NOTES
Fiber optic cables that convey data at high speeds across the globe area is a well-known feature of modern technology. Now, university data scientists have found a unique use for them: monitoring earthquakes. Distributed across Stanford’s telecom infrastructure, the cables have become a seismic array that has already collected data on over 1,000 Bay Area earthquakes, says Eileen Martin whose PhD research focused on seismology. Martin and Nilah Monnier Ioannidis sat down to discuss the pivotal role of data in their research for the Women in Data Science podcast.

Despite coming from different fields, both researchers tout the importance of data in academic research. Genomic sequencing requires vast amounts of data, but privacy concerns mandate important restrictions, Ioannidis says. Consequently, she collaborated with outside institutions that had already amassed large stores of genomic data to understand its role in the field of genomics. Kaiser Permanente is among those collaborations; the company has already done a large-scale genomics study for Northern California. Martin says that being open with other researchers and sharing ideas is a real plus in the field, a sentiment that Ioannidis echoed. While Martin acknowledges the risk that another researcher will use the shared information, she adds, “We’re all busy trying to do our own experiments.” Their advice for students looking to pursue a career in data science within academia: look for new experimental techniques because there will always be an interesting math or computing problem to solve.

RELATED LINKS
Connect with Eileen Martin: LinkedIn 
Eileen Martin Website
Stanford School of Engineering Spotlight
Virginia Tech Mathematics 
Connect with Nilah Monnier Ioannidis: LinkedIn

​
Listen and Subscribe to the WiDS Podcast on Apple Podcasts, Google Podcasts, Spotify, Stitcher
Picture
Picture
Picture

Subscribe to the WiDS Podcast:

Picture
Picture

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2022 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee