Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Dora Demszky

PhD candidate
Stanford University
Picture
Dora is PhD candidate in the Linguistics Department at Stanford University, advised by Professor Dan Jurafsky and a member of the Stanford NLP group where she publishes under her full name, Dorottya Demszky. Dora's research focuses on developing and applying natural language processing methods to support student centered education. Her recent work in this domain includes analyzing the representation of historically marginalized groups in US history textbooks and measuring teachers' uptake of student ideas in classroom discourse. She has also worked on dialect feature recognition, emotion detection, and on using natural language processing to understand political issues, such as polarization and propaganda.

Workshop: Using Natural Language Processing to Analyze US History Textbooks
May 26, 2021; 10:15-11:00 am PST

In this workshop, Dora will illustrates how natural language processing (NLP) can be used to answer social science questions. The workshop will focus on applying NLP to analyze the content of 15 US history textbooks used in Texas, to analyze the representation of historically marginalized people and groups. The workshop is based on a paper that also has an associated toolkit, and it will provide examples of how this toolkit can be used using a Jupyter notebook that will be made available.
Watch Workshop

Back to Workshop Instructors

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2023 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee