Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Using Data Science to Keep Financial Data Secure with Shir Meir Lador

8/15/2019

 
Picture
Shir Meir Lador, data science team lead at Intuit in Israel, develops machine learning models for security, risk and fraud in products like Quickbooks, Turbo Tax and Mint. In addition to her job at Intuit, Lador is a WiDS ambassador in Israel, has her own podcast about data science, and is a co-founder of PyData Tel Aviv meetups.

Lador’s team at Intuit focuses on machine learning in security and fraud applications to protect customers’ sensitive financial data from fraudsters and hackers. She and her team use anomaly detection and semi-supervised methods to secure Intuit products and data. “In general, putting AI into products is not an easy task.” But she thinks we need to put a lot of effort into securing our data especially with recent data leaks from Equifax and Facebook. “I think the world is going into that direction with the GDPR and other initiatives. AI has a lot of potential of helping in that domain,” she explained during a conversation with Stanford’s Margot Gerritsen, Stanford professor and host of the Women in Data Science podcast.

Israel has a lot of expertise in the security domain because many young people study security and encryption during Israel’s mandatory military service. She had the option to do this during her service, but since she already knew she would pursue a career in this area, instead she chose to become a pilot instructor in the flight simulator. “It was a very unique experience that I would probably never get to do.”

When Lador was starting her career in data science, she did not know many people in the field. She decided to start a PyData branch in Israel because she wanted to build a professional data science community. “My main motivation was that I wanted to learn and that I wanted to have friends and people to consult with and learn from. And now I have so many data scientist friends because of all this work and it’s great. I love it.”

She noticed when organizing PyData events that it was much easier to get male speakers. When she would ask a talented female scientist to talk about her work, she would say: “No, I’m not an expert… I’m not ready. I need to learn more… I was like, no, you’re enough years in the field. Everyone can learn something from you.”

​Being a WiDS ambassador was like an extension of her PyData work. “I get to decide what’s in the conference and bring the best talks there.” Her experience organizing the PyData meetups helped her know how to create a valuable conference. She sees WiDS as a great opportunity to encourage more women to speak by giving them a platform, but also by bringing all the people together. “Seeing all those women on stage. This gives great inspiration to speak at other events, not just in WiDS. I think this is just an amazing initiative.”
Picture
Shir Meir Lador, Intuit Israel

​Listen and Subscribe to the WiDS Podcast on Apple Podcasts, Google Podcasts, Spotify, Stitcher.


Comments are closed.

    Categories

    All
    WiDS Ambassadors
    WiDS Conference
    WiDS Datathon
    WiDS NextGen
    WiDS Podcast
    WiDS Regional Events
    WiDStory
    WiDS Workshops

    RSS Feed

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2022 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee