Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Data science in FinTech and financial services, Menglin Cao

7/15/2021

 
Picture
Menglin Cao, Senior VP and Head of AI and NLP Model Development at Wells Fargo, discusses the central role of data science in fintech and financial services, and best practices for success on a recent WiDS Podcast episode.
After she earned her BA, MA, and PhD in economics from the University of Maryland, Menglin Cao spent six years at Fannie Mae before joining Wells Fargo. Over the past 15 years, she has seen a major shift in how financial institutions use data to drive business decisions. In the past, many business decisions were based upon the experience and judgement of senior executives, but today every decision must be backed up by data and analytics. 

​Many aspects of the financial services that leverage data are great candidates for AI and ML models, such as customer experience, revenue generation, and risk management. She wants to ensure they build models that are fair, explainable, interpretable, and able to generate value.She offers several examples about best practices for success.

To be useful, the data must first be focused on a foundational business question. “Data can tell many stories, but until you bring the story to the businesses and they can relate the story to a question, experience or concern that they have, it’s not going to lead to an actionable insight.” The journey to find that answer requires data science, data algorithms, operational procedures, implementations, and integrations of systems, but without the right question to begin with, it doesn’t lead anywhere. 

It’s also important to build a solution in a matrix organization rather than top-down approach, working with the technology team, model developers, subject matter experts, the model governance and validation teams. And data management has become centralized, shifting from silos to a central enterprise data lake where every line of business and all models depend on one source of truth. This removes the redundancies and duplications that silo-based data warehouse may create.

To ensure that models are fair, they continually test them for bias. One way to make sure that these data are representative of the entire population is to conduct a sensitivity analysis. They can see if the model can stand on its own by “shocking it” in different ways to find any vulnerabilities that need to be addressed.

She acknowledges that there are not yet many women leaders in fintech and the financial sector but she is hopeful that can change if women are given the opportunity. “I am in the position that I am in because my leaders trusted me and gave me a chance.” She hopes that leaders will continue to give diverse people a chance to grow and demonstrate what they can do. And then once the opportunity's given to you, then the rest depends on what you make out of it.
Picture
Menglin Cao, Wells Fargo

​Listen and Subscribe to the WiDS Podcast on Apple Podcasts, Google Podcasts, Spotify, Stitcher.

Comments are closed.

    Categories

    All
    WiDS Ambassadors
    WiDS Conference
    WiDS Datathon
    WiDS NextGen
    WiDS Podcast
    WiDS Regional Events
    WiDStory
    WiDS Workshops

    RSS Feed

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2023 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Regional Events 2023
    • WiDS Stanford 2023 Online
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2023
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee