Women in Data Science (WiDS)
  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee

Ashwini Chandrashekharaiah

Staff Data Scientist
Walmart Global Tech
Picture
 
Ashwini is a Staff Data Scientist at Walmart Global Tech based out of Bangalore. She has close to 11 years of experience ranging from Java/Oracle Apps development for Supply Chain ERP to enterprise level machine learning products across assortment, pricing and customer domains.

Ashwini holds a Master of Management in Business Analytics from Indian Institute of Science, Bangalore.

In Walmart, as part of Data Ventures Team, Ashwini is working on designing and developing monetizable Data Science solutions that provide insights that would enable efficient planning and strategic decisions.

Bayesian Machine Learning & Sampling Methods--An Introduction
​September 29, 10:15-11:00am PST

Prerequisites: Basics of Probability Distribution; Bayes Theorem, Theorem of Total Probability, Conditional Probability; Linear Regression Basics + Linear Algebra
​

At its root, Bayesian Machine Learning builds statistical models using Bayes’ Theorem. While these methodologies are less explored than their frequentist counterparts, BML finds widespread applications in domains where data is limited and explainability of a model is paramount (i.e., domains where deep learning fails!). In Walmart, BML is widely used in Healthcare and Shrink studies. With growing advancement in GPU availability and open-sourced sampling algorithms, BML is seeing traction like never before. However, Bayesian isn’t for the faint of heart! We are here to make it a tad simpler to start with.

In this workshop, you will learn about the core concepts of BML – how it is different from the frequentist approaches, building blocks of Bayesian inference and what known ML techniques look like in a bayesian set-up. You will also learn how to use various sampling techniques for bayesian inference and why we need such techniques in the first place. The workshop will also provide links and materials to continue your Bayesian journey afterwards.

This workshop is meant as an introduction to select BML modules - we strongly recommend you to continue exploring the world of bayesian once you have taken this first step. Happy learning!
Watch Workshop

Back to ​Workshop Instructors

Initiatives

Conference
Ambassador Program
Datathon
Podcast
Workshops 
Next Gen

Follow Us

LinkedIn
Twitter
Facebook
Instagram
YouTube
​Blog

connect

LinkedIn Group
Facebook Group
subscribe
donate

© 2022 Women in data science. Women in Data Science is a Registered trademark of Stanford University. 

  • Home
  • About
    • Blog
    • WiDStory
    • News
    • Research
    • Sponsors
    • Collaborators
    • Contact
    • Donate
  • Conferences
    • WiDS Stanford 2023 Agenda
    • WiDS Stanford 2023 Speakers
    • WiDS Regional Events 2023
    • Ambassadors 2023 >
      • Ambassador Advisory Council
    • WiDS Ambassador Program
    • Past Conferences >
      • WiDS 2022
      • WiDS 2021
      • WiDS 2020
      • WiDS 2019
      • WiDS 2018
      • WiDS 2017
      • WiDS 2015
    • Conference Committee
  • Datathon
    • Datathon Details
    • Datathon Resources >
      • Datathon Press Release
    • WiDS Datathon Workshops 2023
    • Datathon News
    • Datathon Collaborators
    • Datathon Committee
  • Podcast
    • Podcast Committee
  • Education
    • Workshops >
      • Workshop Instructors
      • Workhop Committee
    • Next Gen >
      • Next Gen Resources
      • Next Gen Committee